
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51110 52

IDS Based: Response and Recovery Engine

Jivan Sunklod
1
, Rahul Jadhav

2
, Gangadhar Survyanshi

3
, Digambar Gadhaling

4
, Dr. Kishor Wagh

5

Department of Computer Engineering GHRCEM, Savitribai Phule Pune University, Pune1, 2,3,4,5

Abstract: In today's life the internet user population are very increased that why the user face of fast-spreading

intrusion. The intrusion detection possible not only detection algorithms, but also it required the special tool hence we

create a new tool that is intrusion response and recovery in short RRE tool. In this paper, we propose a new product this

product can do the automated response the intrusion this is called the Response and Recovery Engine (RRE). Our

engine employs a user data transaction response strategy against adversaries modeled as opponents in a two-user

stochastic transaction. Our software whose name is RRE involves attack-response trees to response the attacker and

analyzes undesired security events and their countermeasures using Boolean logic to combine lower-level attack

consequences. In addition, RRE database involve only the users data those who registered in the RRE. The product

involves the intrusion detection system which detects the intrusion in Boolean form. RRE then correct option to take

optimal response actions by solving a partially overt competitive Markov decision process that is automatically derived

from attack-response trees. Experimental results show that RRE, using the Snort’s alerts, the snorts alert can provide
the security for networks for which assailment-replication trees have more than 500 nodes.

Keywords: Response and Recovery Engine (RRE), IP fragmentation, SMTP mass mailing, DoS attacks.

1. INTRODUCTION

To reduce impact of intrusion by detecting the type of

attack on the system and provide optimal response. For a

large network of computer user is increased then the

system is deployed in an area, there are number of

systems. The use of internet is in the order of increasing

order of size in day to day life hence it is essential to
provide the security of the effect of the security of the

network is in great manner. IP fragmentation, SMTP mass

mailing, DoS attacks, flood attacks, spoofing, buffer

overflow are some of kind of the attacks that occur in the

network. And one another serious issue in network it said

to be network Intrusion. The systems are damaged from

the intrusion. The need to reduce problem of protection

maintenance of computer networks is one of the important

thing. The main aim is to reduce this intrusion and take an

correct action on the intrusion that save system damage

and provide proper response to the intruders. Intrusion
response usually is declared to be a manual process

performed by network admin user who are notified by IDS

alarms and detect to the intrusions. This manual response

process inevitably take some time between notification

and response, now this create the problem persistence

again as the response can be easily exploited by the

attacker. Genetic algorithm used for IDS were the most

appropriate techniques for intrusion alerts but our aim to

provide proper automated response was the main

motivation. RRE was given the preference as it can be

satisfy all the requirements, to be headlined we get the
technique for automated response that provide reduction

of intrusion response cost and intrusion response time.

In this paper, we present an automated low cost intrusion

response system that system is called the Response and

Recovery Engine (RRE) that designs the security battle

between itself and from the attacker as a multi-step,

sequential, hierarchical, non-zero-sum, two-user

transaction. In each step of the transaction, RRE involved

a new advanced attack tree like structure, called the attack-

response tree (ART), and it received IDS alerts to evaluate

various security properties of the system.

ARTs provide a leangle way to describe system security

based on possible intrusion and response scenarios for the

attacker and detect and response engine, respectively.

More usefully ARTs are able RRE to consider inherent
uncertainties in alarms received from IDSes (i.e., false

positive and false negative rates) when counting the

system’s security and deciding on response actions. Then,

the RRE automatically transformed the attack-response

trees into partially observable competitive Markov

decision processes that are solved to search the optimal

response action opposite to the attacker, in the sense that

the more discounted accumulative damage that the

attacker can cause after in the transaction is minimized.

Using this game-theoretic approach, RRE deceptively

adjusts its activities according to the attacker’s possible in

the future reactions, thus preventing the attacker from

causing significant damage to the system by taking an
intelligent action-chosen sequence of actions. To deal with

security issues with different angularities, RRE’s two-

layer architecture consists of local engines, which reside in

individual host computers, and the global engine, which

stayed in the response and recovery server and decides on

global response actions once the system is not able recover

by the local engines. Furthermore, the hierarchical

architecture improves scale ability, ease of design, and

performance of RRE, so that it can provide security

computing assets against attackers in large-scale computer

networks.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51110 53

2. RRE’S HIGH-LEVEL ARCHITECTURE

Figure 1: RRE’s High-level Architecture

Before taking theoretical design and enforcement details,

we constitutionalize a high-level architecture of RRE, as

declared in Fig. 1. It has two types of decision-making
engines Figure 1. High-level architecture of the RRE at

two distinct layers, i.e., local and global. This is stratified

structure of RRE’s architecture (discussed later) makes it

capable of handling very dominant IDS alerts, and

selecting optimal response actions. More than, the two-

user architecture improves its quantifibiality for large-

scale computer networks, in which RRE is supposed to

provide security of a large number of host computers from

the malicious attackers. Finally, partition of high- and low-

level security issues significantly simplifies the correct

design of response engines. As the first layer, RRE’s local

engines are separated in host computers. Their main set of
inputs involves of IDS alerts and attack-response trees. All

IDS alerts are sent to and stored in the alert database (Fig.

1) to which every local engine subscribes to get notified

when any of the alerts related to its host computer is

received. Using the preceding local information, local

engines compute local response actions and send them to

RRE satisfier that are in charge of enforcing received

commands and reporting back the recruitment status, i.e.,

whether the command was successfully take out. The

internal architecture of engines includes two major

components: one is the state space generator and the
other is decision engine. Once inputs have been received,

all possible cyber security states in which the host

computer can be are generated. As discussed later in, the

state space might be intractably large; therefore, RRE

partially creates the state space so that the decision making

unit can quickly decide on the optimal response

consultation. The decision-making unit employs a pattern

matching algorithm that models attacker-RRE interaction

as a two user in which each user tries to maximize his or

her overall benefit. This implies that, once a system is

under attack, immediate grasping response decisions are

unnecessarily the best choices, since they may not

guarantee the minimum total accumulative cost involved

in fully recovery from the attack. Although individual

local engines attempt to provide security to their
corresponding host computers, global network-level

response actions required inputs from multiple host

computers. Moreover, individual local engines may

become malicious contain if they get compromised. To

Handel to these problems, RRE’s global engine, as its

second layer, gets high-level information from all host

computers in the network, orientate on optimal global

response actions to take, and organize RRE agents to

accomplish the actions by sending them pertinent response

commands. In addition to local security calculate from

host computers, network topology is also nourished into
the global engine in the form of an ART graph, which

shows what combinations of compromised host computers

will change the security status of the whole network, and

what global response actions are available to stop the

attacks. The ARTs, in the global engine, depend upon the

network’s topology; therefore, they should be specifically

designed by experts for each network. In opposition, the

ARTs for local assets, once designed, are simply re-used.

If the global engine is cooperating, the ability to

implement global-level response actions is affected;

however, the local engines are not affected. Moreover,

global engines can be protected by employing equal to
security measures, and if feasible, intrusion tolerant

approaches.

3. LOCAL RESPONSE AND RECOVERY

Having given a high-level overview of how in hierarchical

manner structured components in RRE interface with each

other, we now present the theoretical form of design of

these components in detail. Starting with the lowest-level

component in RRE, we explain in details how local

engines, residing in host computers, provide security to
local computing assets using security-related data, i.e.,

IDS alerts, about them.

3.1. Attack-Response Tree
To forefend a local computing asset, its corresponding

local engine first endeavors to deduce what security

properties of the asset have been assailed, given a received

set of alerts. Attack trees offer a convenient way to

systematically categorize.

3.2. Stackelberg Game:
RRE vs. Assailant Reciprocal interaction between the
adversary and replication engine in a computer system is

genuinely a game in which each player endeavors to

maximize his or her own benefit. The replication cull

process in RRE is modeled as a sequential Stackelberg

stochastic game in which RRE acts as the bellwether while

the assailer is the adherent; however, in our illimitable-

horizon game model, their roles may change without

affecting the final solution to the quandary. Categorically,

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51110 54

the game is a finite set of security states S that cover all

possible security conditions that the system could be in.

The system is in one of the security states s at each time

instant. RRE, the bellwether, culls and takes a replication

action ms ∈ M admissible in s, which leads to a
probabilistic security state transition to s.

3.3. Automatic Conversion:
 ART-to-MDP Utilizing the ARTs, RRE’s local engines

automatically construct replication decision process

models, where security states are defined as a binary

vector whose variables are genuinely the set of

satiated/unsatisfied (1/0) leaf consequence nodes in the

ART under consideration. In other words, as a binary

string, each security state vector represents the leaf node
consequences that have already been set to 1 according to

the received alerts from IDS systems. For instance, the

security state space for an ART with n leaf nodes consists

of 2n n-bit state vectors. For ARTs with an astronomically

immense number of leaf nodes,

3.4. Agents

In the above mentioned security battle between RRE and

the adversary, agents play a key role in accomplishing

each step of the game. They are in charge of taking

replication actions decided on by RRE engines.

Authentically, having received commands from engines,
agents endeavor to carry them out prosperously and report

the result, whether they were prosperous or not, back to

the engine. If the agent’s report denotes that some

replication action has been taken prosperously, the engines

update their ART trees’ corresponding variables, which

are leaf node values in the subtree for the prosperously

taken replication action node. Consequently, as explicated

above, leaf node variables in ART trees are updated by

two types of messages: IDS alerts and agents’ reports.

Otherwise, if the agent cannot respond prosperously (e.g.,

within a categorical duration), the second-best action is
sent by the engine to carry out.

4. GLOBAL RESPONSE AND RECOVERY

Albeit host-predicated intrusion replication is taken into

account by RRE’s local engines utilizing local ARTs and

the IDS rule-set for computing assets, e.g., the SQL server,

maintenance of ecumenical network-level security requires

information about underlying network topology and

profound understanding about what different

amalgamations of secure assets are compulsory to assure

network security maintenance. In RRE, ecumenical
network intrusion replication is resolved in the ecumenical

server, where, just as in local engines, ARTs are utilized

for correlating received information, and then maximin

theory is applied to cull the optimal ecumenical replication

action. Such a cull is not possible in local engines due to

either their inhibited local information or their inability to

manage cooperation among distributed RRE agents. In

contrast to ARTs in local engines for computing assets that

demand one-time design effort for each asset (as in IDS

rule-sets), ecumenical ARTs in RRE’s server for network

security should be designed categorically for each

individual network in which RRE is deployed, since these

higher- ARTs depend on network topology, which

implicitly affects (7) a network’s ecumenical security
state. In our current implementation, there is only one

ecumenical, i.e., network-level, ART in RRE that must be

designed by an expert. Generally, ecumenical ARTs in

RRE’s server have the same structure discussed in § 4.1,

though some demystifying explications are needed

regarding their root and leaf nodes. As discussed in § 4.4,

local engines send their local security estimates, i.e., root

node probabilities δg of their ARTs, toRRE’s server.

Indeed, local security estimates contribute to leaf nodes in

the ecumenical ART in RRE’s server. Furthermore, the

top-event node of the ART in the ecumenical engine is
labeled “network security infringement,” and is defined

and formulated according to the underlying nodes. In other

words, network security is defined by the ecumenical ART

in RRE’s server utilizing its leaf nodes, which are

themselves root nodes of local

ARTs in RRE’s local engines. Ecumenical ART is

employed for quantitative evaluation of a network’s

security state. The correlation and replication cull

calculations are equipollent to in local ARTs (§ 4), except

that for ecumenical ART, the rudimental leaf node l

probability measures are computed as δ(l) = δg(l), where

g(l) denotes the local ART corresponding to leaf node l of
the ecumenical ART in RRE’s server.

5. CASE STUDY

 SCADA Networks In this section, we describe the

replication cull process for a case study process control

network for a puissance grid. We have culled supervisory

control and data acquisition (SCADA) networks as our

case study for two reasons. First, since they control

physical assets, they require timely replication in the

presence of attacks. Second, in contrast to general IT
computer networks, they consist of computing assets with

predefined categorical responsibilities and communication

patterns; this simplifies the design process for

comprehensive ARTs and IDSes with exhaustive alert

sets. Fig. 3 shows a sample 3-bus power grid and its

SCADA network, which is responsible for monitoring and

controlling the underlying power system. There are a total

of three engenderers, any one of which is able to provide

the potency required by customers, i.e., load. To monitor

the potency system, each bus is affixed to a sensor, i.e., a

phasor quantification unit (PMU). The sensor sends

voltage phasors (i.e., magnitudes and phase angles) of the
bus and current phasors of transmission lines connected to

that particular bus to SCADA. Moreover, to control power

generation, having received sensory data, SCADA

computes optimal generation set points for individual

engenderers. As shown in Fig. 3, SCADA consists of

different components, among which there are constrained

communications. First of all, given sensory data, the state

estimation server is responsible for estimating the state of

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51110 55

the whole power system. A database stores these states

and other information that might be used later by

administrators or customers through the web server. The

human machine interface (HMI) and security constrained

optimal power flow (SCOPF) compute Case study:
SCADA networks. Attack - replication tree control

commands utilizing those estimated states. As

demonstrated, a sultry spare HMI is additionally active

and connected as part of the network. a sample brief

network-level ART for the process control network

described above. The top event is opted to be “SCADA is

compromised,” and its children denote deficiencies in

providing loads and report generation, which are two main

goals of the supervisory network. For simplicity, leaf

nodes here denote compromise of individual host systems,

and are updated by local engines. As a case in point, G1, if
set to 1, designates that the controller contrivance for the

engenderer on bus 3 is compromised, and the upper

replication node “restart” shows that a countermeasure for

the compromised controller is to reinstall the control

software and restart the contrivance. Details such as action

costs, rates, and probabilities are not shown.

The cyber-security state space definition for the above

attack-replication tree is shown in Fig. 5 as a binary

vector, where each individual bit is set predicated on

reports from local engines. For instance, the sample state

vector in the figure be tokens that HMI and G1 are
compromised, according to reports from their

corresponding local engines, while other hosts are in their

mundane operational mode. Given the assailment-

replication tree and reports from local engines, RRE

commences online construction of its accompanying

partially overt competitive Markov decision process.

Starting from the current state, i.e., s = (000100000010). A

sample cyber-security state there are a total of 13 possible

transitions, partitioned into two subsets: 1) replication

actions Ar(s) = {restart(G1), switch(HMI),NOP}, and 2)

adversarial actions Aa(s) regarding leaf consequence
nodes. Here, we surmise that responsive actions Ar(s)

require some manual assistance by a SCADA operator;

hence, they cannot be accomplished simultaneously due to

constrained human resources. The solution for this model

by RRE gives switch (HMI) as the optimal replication

action, since if restart (G1) or NOP was culled, the assailer

could cause an abundance of damage to the system

afterwards by compromising the SCOPF server (Fig. 4),

leading to consummate failure of the control subsystem

that would consequently affect how power loads were

provided and conclusively result in the top event “SCADA

compromised.” In other words, as explicated earlier, the
engine culls the replication action that minimizes the

maximum damage that the assailant can cause later.

6. COMPUTATIONAL EFFICIENCY

Albeit the value iteration algorithm performs well in

MDPs with several thousand states, RRE (like most state

based modeling techniques) faces the state space explosion

quandary when a sizably voluminous network that

includes an astronomically immense number of assets is to

be for fended utilizing numerous alerts sent by distributed

IDS systems. This exponential magnification of the state

space makes it infeasible to compute an optimal solution,
i.e., replication action, in immensely colossal-scale

applications. The quandary becomes even worse when

POCMDP is employed to find an optimal solution.

Consequently, RRE uses two state compaction techniques

to deal with this quandary.

First, the most likely state (MLS) approximation technique

[5] is utilized to convert POMDP to MDP, which is more

tractable for authentic-time replication decision-making.

To do so, we compute the most likely state utilizing s∗ =

argmaxs b(s), and define policy as π(s) = πMDP (s∗),

which is computed utilizing Bellman’s optimality

equations for the value function V ∗(s) = max ar ∈ Ar(s)

Υ(V ∗, s, ar) and policy πMDP (s) = arg max ar ∈ Ar(s)

Υ(V ∗, s, ar), in which Υ(.) is as defined in (13). The value

iteration algorithm[3] is employed to compute the value

function, i.e., V (s) ← max a ∈ A(s) Υ(V, s, a). Utilizing

MLS in RRE is quite plausible, since the probability of the

most likely state is far more preponderant than the

probability of other states; however, the derived MDP is

not yet diminutive enough to deal with in authentic-time.

Furthermore, due to its astronomically immense state
space, even off-line solution techniques are not utilizable,

since most of them, e.g., value iteration, perform iterative

updates over the entire state space. To focus computations

on pertinent states, an online anytime algorithm1 called

envelope is employed, making RRE capable of deciding

authentic-time replications even in astronomically

immense-scale computer networks. In brief, the envelope

algorithm performs a finite 1An anytime algorithm can be

interrupted at any point during execution to return an

answer whose value, at least in certain classes of

stochastic processes, ameliorates in prospect as a function
of the computation time. look-ahead search on a subset of

states reachable from a given current state, i.e., s∗

(mentioned above).

This subset, called “envelope Eπ,” initially contains only

the current state and is progressively expanded. An

approximate value function ˜ V is utilized to evaluate the

fringe states, i.e., the set of states that are not in the

envelope but may be reached in one step from some state

in the envelope: Fπ = {s ∈ S − Eπ|∃s ∈ Eπ, P(s , π(s), s) >
0}. (14) The envelope converges to the optimal policy [7],

and its general scheme is as follows: 1) Initialization:

Engender the initial envelope Eπ = s∗. 2) While (Eπ = S)

and (not deadline) do – Fringe expansion: Elongate the

envelope Eπ. Some s ∈ Fπ is culled, and its value is

updated. – Forebears update phase: Engender an optimal

policy π for the envelope. 3) Return π. Utilizing the

envelope, RRE can solve immensely colossal MDPs very

efficiently by engendering partial policy, defined only on

the envelope, without evaluating the entire state space.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51110 56

7. EXPERIMENTAL EVALUATION

In this section, we investigate how the proposed

Replication and Recuperation Engine performs in

authenticity. We have implemented RRE on top of Snort
2.7 [22], which is an open-source signature-predicated

IDS. The experiments were run on a computer system with

a 2.2 GHz AMD Athlon 64 Processor 3700+ with 1 MB of

cache, 2 GB of recollection, and the Ubuntu (Linux

2.6.24-21) operating system.

7.1. Scalability

To evaluate how RRE handles involutes networks

consisting of astronomically immense numbers of host

systems, we quantified the time required by RRE to

compute the optimal replication action vs. sundry metrics.
Fig. 6 shows the average timeto- replication over ten runs

vs. the assailment-replication tree order, i.e., the maximum

number of children for each node. Given a fine-tuned

number, e.g., 500 in Fig. 6, of total nodes, the ART tree

order determines the number of leaf nodes that contribute

to the size of the state space in a Markovian decision

model. For each tree order d, a balanced tree, in which

each node has d children, is engendered; gates are

assigned to be AND or OR with equal probability, i.e., 0.5.

In our experiments, the -optimality termination criterion in

Bellman’s equation and discounting factor are set to = 0.1
and γ = 0.99, respectively. Then, a decision process is

constructed and solved, and the total time spent is

recorded (Fig. 6). As expected, the figure shows that

incrementing the ART order leads to rapid magnification

of the required time-toresponse by the engine. In another

scalability evaluation experiment, we quantified time-to-

replication vs. the number of nodes in balanced ART trees

of order 2. Fig. 7 shows average results on ten runs for two

schemes.

First, given IDS alerts and the ART tree, the consummate
decision model consisting of all states in the state space

was constructed. As shown in Fig. 7(a), the replication

engine can solve for optimal replication actions for ART

trees with up to 45 nodes within about 2 minutes. Second,

an online finite-look ahead Markovian decision model

with an expansion limit of 2 steps was engendered and

solved. Υ(V, s, a) = _ s_∈S P(s _|s, a).{r(s, a, s _) + √ γ.[

min aa∈Aa(s_) _ s__∈S P(s __|s _ , aa). _ r(s _ , aa, s __)

+ √ γ.V (s __) _]} (13) As illustrated in Fig. 7(c),

constrained expansion ameliorates a solution’s

convergence speed and increases the solvable ART size to

trees with up to 500 nodes within 40 seconds.
By solving ART trees with about 900 nodes in a minute,

RRE can forfend immensely colossal-scale computer

networks. Third, to further amend RRE’s scalability, we

evaluated how expeditious a decision process is solved

with an upper expansion limit of 2. Fig. 7(b) compares

total instauration cost between the abovementioned two

schemes for all possible starting scenarios, i.e., states (2|L|

= 64).

8. CONCLUSION

A game-theoretic intrusion replication engine, called the

Replication and Instauration Engine (RRE), was

presented. We modeled the security maintenance of
computer networks as a Stackelberg stochastic two-player

game in which the assailant and replication engine

endeavor to maximize their own benefits by taking

optimal adversary and replication actions, respectively.

Utilizing an elongated attack tree structure called the

Attack-Replication Tree (ART), RRE explicitly takes into

account inaccuracies associated with IDS alerts in

estimating the security state of the system. Moreover, RRE

explores the intentional malevolent attacker’s next

possible action space afore deciding upon the optimal

replication action, so that it is ensured that the assailer
cannot cause more preponderant damage than what RRE

soothsays. Experiments show that RRE takes congruous

countermeasure actions against perpetual attacks, and

brings an insecure network to its mundane operational

mode with the minimum possible cost.

ACKNOWLEDGMENTS

This material is predicated upon work fortified by the

National Science Substratum under Grant No. CNS-

0524695, as a component of the NSF/DOE/DHS

Trustworthy Cyber Infrastructure for Power Center
(http://tcip.iti.illinois.edu). We thank our colleagues, who

provided insight and expertise that greatly assisted the

research.

We thank our Mentor Dr. Kishor Wagh for guiding us for

this project. We thank our Professor Sarita Patil for

inspiring us to do this project and her comments on the

manuscript Power Center (http://tcip.iti.illinois.edu).

REFERENCES

[1] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic

concepts and taxonomy of dependable and secure computing. IEEE

Trans. on Dep. and Sec. Comp., 1:11–33, 2004.

[2] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt. Using specification-

based intrusion detection for automated response. Proc. of the Int’l

Symp. on Recent Advances in Intrusion Detection, pages 136–54,

2003.

[3] R. Bellman. Dynamic Programming. Princeton University Press,

1957; republished 2003.

[4] M. Bloem, T. Alpcan, and T. Basar. Intrusion response as a

resource allocation problem. Proc. of Conf. on Decision and

Control, pages 6283–8, 2006.

[5] A. Cassandra. Exact and Approximate Algorithms for Partially

Observable Markov Decision Processes. PhD thesis: Brown

University, 1998.

[6] F. Cohen. Simulating cyber attacks, defenses, and consequences.

Journal of Comp. and Sec., 18:479–518, 1999.

[7] T. Dean, L. Kaelbling, J. Kirman, and A. Nicholson. Planning

under time constraints in stochastic domains. Artificial Intelligence,

76:35–74, 1995.

[8] J. Filar and K. Vrieze. Competitive Markov Decision Processes.

Springer-Verlag, 1997.

[9] B. Foo, M. Glause, G. Howard, Y. Wu, S. Bagchi, and E. Spafford.

Information assurance: Dependability and Security in Networked

Systems. Morgan Kaufmann, 2007.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 11, November 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51110 57

[10] B. Foo, Y. Wu, Y. Mao, S. Bagchi, and E. Spafford. Adepts:

adaptive intrusion response using attack graphs in an ecommerce

environment. Proc. of Dependable Systems and Networks, pages

508–17, 2005.

[11] S. Hsu and A. Arapostathis. Competitive Markov decision

processes with partial observation. Proc. of IEEE lnt. Conf. on

Systems, Man and Cybemetics, 1:236–41, 2004.

[12] L. Kaelbling, M. Littman, and A. Cassandra. Partially observable

Markov decision processes for artificial intelligence. Proc. of the

German Conference on Artificial Intelligence: Advances in

Artificial Intelligence, 981:1–17, 1995.

[13] O. P. Kreidl and T. M. Frazier. Feedback control applied to

survivability: A host-based autonomic defense system. IEEE Trans.

on Reliability, 53:148–66, 2004.

[14] C. Kruegel, W. Robertson, and G. Vigna. Using alert verification to

identify successful intrusion attempts. Info. Processing and

Communication, 27:220–8, 2004.

[15] S. Lewandowski, D. Hook, G. O’Leary, J. Haines, and M. Rossey.

SARA: Survivable autonomic response architecture. Proc. of the

DARPA Info. Survivability Conf. and Exposition II, 1:77–88, 2001.

[16] M. Locasto, K. Wang, A. Keromytis, and S. Stolfo. FLIPS: Hybrid

adaptive intrusion prevention. Proc. of the Symp. On Recent

Advances in Intrusion Detection, pages 82–101, 2005.

[17] K. Lye and J. Wing. Game strategies in network security. Int’l

Journal of Info. Security, 4:71–86, 2005.

[18] S. Musman and P. Flesher. System or security managers adaptive

response tool. Proc. of the DARPA Info. Survivability Conf. and

Exposition, 2:56–68, 2000.

[19] G. Owen. Game Theory. Academic Press, 1995.

[20] P. Porras and P. Neumann. EMERALD: Event monitoring enabling

responses to anomalous live disturbances. Proc. Of the Info.

Systems Security Conf., pages 353–65, 1997.

[21] D. Ragsdale, C. Carver, J. Humphries, and U. Pooch. Adaptation

techniques for intrusion detection and intrusion response system.

Proc. of the IEEE Int’l Conf. on Systems, Man, and Cybernetics,

pages 2344–9, 2000.

[22] R. Rehman. Intrusion Detection Systems with Snort. Prentice-Hall,

2003.

[23] B. Schneier. Secrets & Lies: Digital Security in a Networked

World. John Wiley & Sons, 2000.

[24] A. Somayaji and S. Forrest. Automated response using system call

delay. Proc. of the USENIX Security Symp., pages 185–97, 2000.

[25] E. Sondik. The Optimal Control of Partially Observable Markov

Processes. PhD Thesis: Standford University, 1971.

[26] N. Stakhanova, S. Basu, and J. Wong. Taxonomy of intrusion

response systems. Int’l Journal on Info. And Computer Security,

pages 169–84, 2007.

[27] A. Valdes and K. Skinner. Adaptive, model-based monitoring for

cyber attack detection. Proc. of the Recent Advances in Intrusion

Detection, pages 80–92, 2000.

[28] G. White, E. Fisch, and U. Pooch. Cooperating security managers:

A peer-based intrusion detection system. IEEE Network, pages 20–

3, 1996.

