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Abstract: In today's life the internet user population are very increased that why the user face of fast-spreading 

intrusion. The intrusion detection possible not only detection algorithms, but also it required the special tool hence we 

create a new tool that is intrusion response and recovery in short RRE tool. In this paper, we propose a new product this 

product can do the automated response the intrusion this is called the Response and Recovery Engine (RRE). Our 

engine employs a user data transaction response strategy against adversaries modeled as opponents in a two-user 

stochastic transaction. Our software whose name is RRE involves attack-response trees to response the attacker and 

analyzes undesired security events and their countermeasures using Boolean logic to combine lower-level attack 

consequences. In addition, RRE database involve only the users data those who registered in the RRE. The product 

involves the intrusion detection system which detects the intrusion in Boolean form. RRE then correct option to take 

optimal response actions by solving a partially overt competitive Markov decision process that is automatically derived 

from attack-response trees. Experimental results show that RRE, using the Snort’s alerts, the snorts alert can provide 
the security for networks for which assailment-replication trees have more than 500 nodes. 

 

Keywords: Response and Recovery Engine (RRE), IP fragmentation, SMTP mass mailing, DoS attacks. 

 

1. INTRODUCTION 

 

To reduce impact of intrusion by detecting the type of 

attack on the system and provide optimal response. For a 

large network of computer user is increased then the 

system is deployed in an area, there are number of 

systems. The use of internet is in the order of increasing 

order of size in day to day life hence it is essential to 
provide the security of the effect of the security of the 

network is in great manner. IP fragmentation, SMTP mass 

mailing, DoS attacks, flood attacks, spoofing, buffer 

overflow are some of kind of the attacks that occur in the 

network. And one another serious issue in network it said 

to be network Intrusion. The systems are damaged from 

the intrusion. The need to reduce problem of protection 

maintenance of computer networks is one of the important 

thing. The main aim is to reduce this intrusion and take an 

correct action on the intrusion that save system damage 

and provide proper response to the intruders. Intrusion 
response usually is declared to be a manual process 

performed by network admin user who are notified by IDS 

alarms and detect to the intrusions. This manual response 

process inevitably  take some time between notification 

and response, now this create the problem persistence  

again as the response can be easily exploited by the 

attacker. Genetic algorithm used for IDS were the most 

appropriate  techniques for intrusion alerts but our aim to 

provide  proper automated response was the main 

motivation. RRE was given the preference as it can be 

satisfy all the requirements, to be headlined we get the 
technique for automated response that provide  reduction 

of intrusion response cost and intrusion response time. 
 

In this paper, we present an automated low cost intrusion 

response system that system is called the Response and 

Recovery Engine (RRE) that designs  the security battle 

between itself and from the attacker as a multi-step,  

 

 

sequential, hierarchical, non-zero-sum, two-user 

transaction. In each step of the transaction, RRE involved 

a new advanced attack tree like structure, called the attack-

response tree (ART), and it received IDS alerts to evaluate 

various security properties of the system.  
 

ARTs provide a leangle way to describe system security 

based on possible intrusion and response scenarios for the 

attacker and detect and response engine, respectively. 

More usefully ARTs are able RRE to consider inherent 
uncertainties in alarms received from IDSes (i.e., false 

positive and false negative rates) when counting the 

system’s security and deciding on response actions. Then, 

the RRE automatically transformed the attack-response 

trees into partially observable competitive Markov 

decision processes that are solved to search the optimal 

response action opposite to the attacker, in the sense that 

the more discounted accumulative damage that the 

attacker can cause after in the transaction is minimized.  
 

Using this game-theoretic approach, RRE deceptively 

adjusts its activities according to the attacker’s possible in 

the future reactions, thus preventing the attacker from 

causing significant damage to the system by taking an 
intelligent action-chosen sequence of actions. To deal with 

security issues with different angularities, RRE’s two-

layer architecture consists of local engines, which reside in 

individual host computers, and the global engine, which 

stayed in the response and recovery server and decides on 

global response actions once the system is not able recover 

by the local engines. Furthermore, the hierarchical 

architecture improves scale ability, ease of design, and 

performance of RRE, so that it can provide security 

computing assets against attackers in large-scale computer 

networks.             
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2. RRE’S HIGH-LEVEL ARCHITECTURE 

 

 
Figure 1: RRE’s High-level Architecture 

 

Before taking theoretical design and enforcement details, 

we constitutionalize a high-level architecture of RRE, as 

declared in Fig. 1. It has two types of decision-making 
engines Figure 1. High-level architecture of the RRE at 

two distinct layers, i.e., local and global. This is stratified 

structure of RRE’s architecture (discussed later) makes it 

capable of handling very dominant IDS alerts, and 

selecting optimal response actions. More than, the two-

user architecture improves its quantifibiality for large-

scale computer networks, in which RRE is supposed to 

provide security of a large number of host computers from 

the malicious attackers. Finally, partition of high- and low-

level security issues significantly simplifies the correct 

design of response engines. As the first layer, RRE’s local 

engines are separated in host computers. Their main set of 
inputs involves of IDS alerts and attack-response trees. All 

IDS alerts are sent to and stored in the alert database (Fig. 

1) to which every local engine subscribes to get notified 

when any of the alerts related to its host computer is 

received. Using the preceding  local information, local 

engines compute local response actions and send them to 

RRE satisfier  that are in charge of enforcing received 

commands and reporting back the recruitment  status, i.e., 

whether the command was successfully take out. The 

internal architecture of engines includes two major 

components: one is the state space generator   and the 
other is decision engine. Once inputs have been received, 

all possible cyber security states in which the host 

computer can be are generated. As discussed later in, the 

state space might be intractably large; therefore, RRE 

partially creates the state space so that the decision making 

unit can quickly decide on the optimal response 

consultation. The decision-making unit employs a pattern 

matching algorithm that models attacker-RRE interaction 

as a two user  in which each user tries to maximize his or 

her overall benefit. This implies that, once a system is 

under attack, immediate grasping response decisions are 

unnecessarily the best choices, since they may not 

guarantee the minimum total accumulative cost involved 

in fully recovery from the attack. Although individual 

local engines attempt to provide security to their 
corresponding host computers, global network-level 

response actions required inputs from multiple host 

computers. Moreover, individual local engines may 

become malicious contain if they get compromised. To 

Handel to these problems, RRE’s global engine, as its 

second layer, gets high-level information from all host 

computers in the network, orientate on optimal global 

response actions to take, and organize RRE agents to 

accomplish the actions by sending them pertinent response 

commands. In addition to local security calculate from 

host computers, network topology is also nourished into 
the global engine in the form of an ART graph, which 

shows what combinations of compromised host computers 

will change the security status of the whole network, and 

what global response actions are available to stop the 

attacks. The ARTs, in the global engine, depend upon the 

network’s topology; therefore, they should be specifically 

designed by experts for each network. In opposition, the 

ARTs for local assets, once designed, are simply re-used. 

If the global engine is cooperating, the ability to 

implement global-level response actions is affected; 

however, the local engines are not affected. Moreover, 

global engines can be protected by employing equal to 
security measures, and if feasible, intrusion tolerant 

approaches. 

 

3. LOCAL RESPONSE AND RECOVERY 

 

Having given a high-level overview of how in hierarchical 

manner structured components in RRE interface with each 

other, we now present the theoretical form of design of 

these components in detail. Starting with the lowest-level 

component in RRE, we explain in details how local 

engines, residing in host computers, provide security to 
local computing assets using security-related data, i.e., 

IDS alerts, about them. 

 

3.1. Attack-Response Tree 
To forefend a local computing asset, its corresponding 

local engine first endeavors to deduce what security 

properties of the asset have been assailed, given a received 

set of alerts. Attack trees offer a convenient way to 

systematically categorize. 

 

3.2. Stackelberg Game:  
RRE vs. Assailant Reciprocal interaction between the 
adversary and replication engine in a computer system is 

genuinely a game in which each player endeavors to 

maximize his or her own benefit. The replication cull 

process in RRE is modeled as a sequential Stackelberg 

stochastic game in which RRE acts as the bellwether while 

the assailer is the adherent; however, in our illimitable-

horizon game model, their roles may change without 

affecting the final solution to the quandary. Categorically, 
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the game is a finite set of security states S that cover all 

possible security conditions that the system could be in. 

The system is in one of the security states s at each time 

instant. RRE, the bellwether, culls and takes a replication 

action ms ∈ M admissible in s, which leads to a 
probabilistic security state transition to s.  

 

3.3. Automatic Conversion: 
 ART-to-MDP Utilizing the ARTs, RRE’s local engines 

automatically construct replication decision process 

models, where security states are defined as a binary 

vector whose variables are genuinely the set of 

satiated/unsatisfied (1/0) leaf consequence nodes in the 

ART under consideration. In other words, as a binary 

string, each security state vector represents the leaf node 
consequences that have already been set to 1 according to 

the received alerts from IDS systems. For instance, the 

security state space for an ART with n leaf nodes consists 

of 2n n-bit state vectors. For ARTs with an astronomically 

immense number of leaf nodes,  

 

3.4. Agents 

In the above mentioned security battle between RRE and 

the adversary, agents play a key role in accomplishing 

each step of the game. They are in charge of taking 

replication actions decided on by RRE engines. 

Authentically, having received commands from engines, 
agents endeavor to carry them out prosperously and report 

the result, whether they were prosperous or not, back to 

the engine. If the agent’s report denotes that some 

replication action has been taken prosperously, the engines 

update their ART trees’ corresponding variables, which 

are leaf node values in the subtree for the prosperously 

taken replication action node. Consequently, as explicated 

above, leaf node variables in ART trees are updated by 

two types of messages: IDS alerts and agents’ reports. 

Otherwise, if the agent cannot respond prosperously (e.g., 

within a categorical duration), the second-best action is 
sent by the engine to carry out.  

 

4. GLOBAL RESPONSE AND RECOVERY 

 

Albeit host-predicated intrusion replication is taken into 

account by RRE’s local engines utilizing local ARTs and 

the IDS rule-set for computing assets, e.g., the SQL server, 

maintenance of ecumenical network-level security requires 

information about underlying network topology and 

profound understanding about what different 

amalgamations of secure assets are compulsory to assure 

network security maintenance. In RRE, ecumenical 
network intrusion replication is resolved in the ecumenical 

server, where, just as in local engines, ARTs are utilized 

for correlating received information, and then maximin 

theory is applied to cull the optimal ecumenical replication 

action. Such a cull is not possible in local engines due to 

either their inhibited local information or their inability to 

manage cooperation among distributed RRE agents. In 

contrast to ARTs in local engines for computing assets that 

demand one-time design effort for each asset (as in IDS 

rule-sets), ecumenical ARTs in RRE’s server for network 

security should be designed categorically for each 

individual network in which RRE is deployed, since these 

higher- ARTs depend on network topology, which 

implicitly affects (7) a network’s ecumenical security 
state. In our current implementation, there is only one 

ecumenical, i.e., network-level, ART in RRE that must be 

designed by an expert. Generally, ecumenical ARTs in 

RRE’s server have the same structure discussed in § 4.1, 

though some demystifying explications are needed 

regarding their root and leaf nodes. As discussed in § 4.4, 

local engines send their local security estimates, i.e., root 

node probabilities δg of their ARTs, toRRE’s server. 

Indeed, local security estimates contribute to leaf nodes in 

the ecumenical ART in RRE’s server. Furthermore, the 

top-event node of the ART in the ecumenical engine is 
labeled “network security infringement,” and is defined 

and formulated according to the underlying nodes. In other 

words, network security is defined by the ecumenical ART 

in RRE’s server utilizing its leaf nodes, which are 

themselves root nodes of local 

ARTs in RRE’s local engines. Ecumenical ART is 

employed for quantitative evaluation of a  network’s 

security state. The correlation and replication cull 

calculations are equipollent to in local ARTs (§ 4), except 

that for ecumenical ART, the rudimental leaf node l 

probability measures are computed as δ(l) = δg(l), where 

g(l) denotes the local ART corresponding to leaf node l of 
the ecumenical ART in RRE’s server. 

 

5. CASE STUDY 

 

 SCADA Networks In this section, we describe the 

replication cull process for a case study process control 

network for a puissance grid. We have culled supervisory 

control and data acquisition (SCADA) networks as our 

case study for two reasons. First, since they control 

physical assets, they require timely replication in the 

presence of attacks. Second, in contrast to general IT 
computer networks, they consist of computing assets with 

predefined categorical responsibilities and communication 

patterns; this simplifies the design process for 

comprehensive ARTs and IDSes with exhaustive alert 

sets. Fig. 3 shows a sample 3-bus power grid and its 

SCADA network, which is responsible for monitoring and 

controlling the underlying power system. There are a total 

of three engenderers, any one of which is able to provide 

the potency required by customers, i.e., load. To monitor 

the potency system, each bus is affixed to a sensor, i.e., a 

phasor quantification unit (PMU). The sensor sends 

voltage phasors (i.e., magnitudes and phase angles) of the 
bus and current phasors of transmission lines connected to 

that particular bus to SCADA. Moreover, to control power 

generation, having received sensory data, SCADA 

computes optimal generation set points for individual 

engenderers. As shown in Fig. 3, SCADA consists of 

different components, among which there are constrained 

communications. First of all, given sensory data, the state 

estimation server is responsible for estimating the state of 
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the whole power system. A database stores these states 

and other information that might be used later by 

administrators or customers through the web server. The 

human machine interface (HMI) and security constrained 

optimal power flow (SCOPF) compute Case study: 
SCADA networks. Attack - replication tree control 

commands utilizing those estimated states. As 

demonstrated, a sultry spare HMI is additionally active 

and connected as part of the network.  a sample brief 

network-level ART for the process control network 

described above. The top event is opted to be “SCADA is 

compromised,” and its children denote deficiencies in 

providing loads and report generation, which are two main 

goals of the supervisory network. For simplicity, leaf 

nodes here denote compromise of individual host systems, 

and are updated by local engines. As a case in point, G1, if 
set to 1, designates that the controller contrivance for the 

engenderer on bus 3 is compromised, and the upper 

replication node “restart” shows that a countermeasure for 

the compromised controller is to reinstall the control 

software and restart the contrivance. Details such as action 

costs, rates, and probabilities are not shown.  

 

The cyber-security state space definition for the above 

attack-replication tree is shown in Fig. 5 as a binary 

vector, where each individual bit is set predicated on 

reports from local engines. For instance, the sample state 

vector in the figure be tokens that HMI and G1 are 
compromised, according to reports from their 

corresponding local engines, while other hosts are in their 

mundane operational mode. Given the assailment-

replication tree and reports from local engines, RRE 

commences online construction of its accompanying 

partially overt competitive Markov decision process. 

Starting from the current state, i.e., s = (000100000010). A 

sample cyber-security state there are a total of 13 possible 

transitions, partitioned into two subsets: 1) replication 

actions Ar(s) = {restart(G1), switch(HMI),NOP}, and 2) 

adversarial actions Aa(s) regarding leaf consequence 
nodes. Here, we surmise that responsive actions Ar(s) 

require some manual assistance by a SCADA operator; 

hence, they cannot be accomplished simultaneously due to 

constrained human resources. The solution for this model 

by RRE gives switch (HMI) as the optimal replication 

action, since if restart (G1) or NOP was culled, the assailer 

could cause an abundance of damage to the system 

afterwards by compromising the SCOPF server (Fig. 4), 

leading to consummate failure of the control subsystem 

that would consequently affect how power loads were 

provided and conclusively result in the top event “SCADA 

compromised.” In other words, as explicated earlier, the 
engine culls the replication action that minimizes the 

maximum damage that the assailant can cause later. 

 

6. COMPUTATIONAL EFFICIENCY 

 

Albeit the value iteration algorithm performs well in 

MDPs with several thousand states, RRE (like most state 

based modeling techniques) faces the state space explosion 

quandary when a sizably voluminous network that 

includes an astronomically immense number of assets is to 

be for fended utilizing numerous alerts sent by distributed 

IDS systems. This exponential magnification of the state 

space makes it infeasible to compute an optimal solution, 
i.e., replication action, in immensely colossal-scale 

applications. The quandary becomes even worse when 

POCMDP is employed to find an optimal solution. 

Consequently, RRE uses two state compaction techniques 

to deal with this quandary.  
 

First, the most likely state (MLS) approximation technique 

[5] is utilized to convert POMDP to MDP, which is more 

tractable for authentic-time replication decision-making. 

To do so, we compute the most likely state utilizing s∗ = 

argmaxs b(s), and define policy as π(s) = πMDP (s∗), 

which is computed utilizing Bellman’s optimality 

equations for the value function V ∗(s) = max ar ∈ Ar(s) 

Υ(V ∗, s, ar) and policy πMDP (s) = arg max ar ∈ Ar(s) 

Υ(V ∗, s, ar), in which Υ(.) is as defined in (13). The value 

iteration algorithm[3] is employed to compute the value 

function, i.e., V (s) ← max a ∈ A(s) Υ(V, s, a). Utilizing 

MLS in RRE is quite plausible, since the probability of the 

most likely state is far more preponderant than the 

probability of other states; however, the derived MDP is 

not yet diminutive enough to deal with in authentic-time.  
 

Furthermore, due to its astronomically immense state 
space, even off-line solution techniques are not utilizable, 

since most of them, e.g., value iteration, perform iterative 

updates over the entire state space. To focus computations 

on pertinent states, an online anytime algorithm1 called 

envelope is employed, making RRE capable of deciding 

authentic-time replications even in astronomically 

immense-scale computer networks. In brief, the envelope 

algorithm performs a finite 1An anytime algorithm can be 

interrupted at any point during execution to return an 

answer whose value, at least in certain classes of 

stochastic processes, ameliorates in prospect as a function 
of the computation time. look-ahead search on a subset of 

states reachable from a given current state, i.e., s∗ 

(mentioned above).  

 

This subset, called “envelope Eπ,” initially contains only 

the current state and is progressively expanded. An 

approximate value function ˜ V is utilized to evaluate the 

fringe states, i.e., the set  of states that are not in the 

envelope but may be reached in one step from some state 

in the envelope: Fπ = {s ∈ S − Eπ|∃s ∈ Eπ, P(s  , π(s), s) > 
0}. (14) The envelope converges to the optimal policy [7], 

and its general scheme is as follows: 1) Initialization: 

Engender the initial envelope Eπ = s∗. 2) While (Eπ  = S) 

and (not deadline) do – Fringe expansion: Elongate the 

envelope Eπ. Some s ∈ Fπ is culled, and its value is 

updated. – Forebears update phase: Engender an optimal 

policy π for the envelope. 3) Return π. Utilizing the 

envelope, RRE can solve immensely colossal MDPs very 

efficiently by engendering partial policy, defined only on 

the envelope, without evaluating the entire state space.  
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7. EXPERIMENTAL EVALUATION 

 

In this section, we investigate how the proposed 

Replication and Recuperation Engine performs in 

authenticity. We have implemented RRE on top of Snort 
2.7 [22], which is an open-source signature-predicated 

IDS. The experiments were run on a computer system with 

a 2.2 GHz AMD Athlon 64 Processor 3700+ with 1 MB of 

cache, 2 GB of recollection, and the Ubuntu (Linux 

2.6.24-21) operating system.  

 

7.1. Scalability 

To evaluate how RRE handles involutes networks 

consisting of astronomically immense numbers of host 

systems, we quantified the time required by RRE to 

compute the optimal replication action vs. sundry metrics. 
Fig. 6 shows the average timeto- replication over ten runs 

vs. the assailment-replication tree order, i.e., the maximum 

number of children for each node. Given a fine-tuned 

number, e.g., 500 in Fig. 6, of total nodes, the ART tree 

order determines the number of leaf nodes that contribute 

to the size of the state space in a Markovian decision 

model. For each tree order d, a balanced tree, in which 

each node has d children, is engendered; gates are 

assigned to be AND or OR with equal probability, i.e., 0.5.  

 

In our experiments, the -optimality termination criterion in 

Bellman’s equation and discounting factor are set to = 0.1 
and γ = 0.99, respectively. Then, a decision process is 

constructed and solved, and the total time spent is 

recorded (Fig. 6). As expected, the figure shows that 

incrementing the ART order leads to rapid magnification 

of the required time-toresponse by the engine. In another 

scalability evaluation experiment, we quantified time-to-

replication vs. the number of nodes in balanced ART trees 

of order 2. Fig. 7 shows average results on ten runs for two 

schemes.  

 

First, given IDS alerts and the ART tree, the consummate 
decision model consisting of all states in the state space 

was constructed. As shown in Fig. 7(a), the replication 

engine can solve for optimal replication actions for ART 

trees with up to 45 nodes within about 2 minutes. Second, 

an online finite-look ahead Markovian decision model 

with an expansion limit of 2 steps was engendered and 

solved. Υ(V, s, a) = _ s_∈S P(s _|s, a).{r(s, a, s _) + √ γ.[ 

min aa∈Aa(s_) _ s__∈S P(s __|s _ , aa). _ r(s _ , aa, s __) 

+ √ γ.V (s __) _ ]} (13) As illustrated in Fig. 7(c), 

constrained expansion ameliorates a solution’s 

convergence speed and increases the solvable ART size to 

trees with up to 500 nodes within 40 seconds.  
By solving ART trees with about 900 nodes in a minute, 

RRE can forfend immensely colossal-scale computer 

networks. Third, to further amend RRE’s scalability, we 

evaluated how expeditious a decision process is solved 

with an upper expansion limit of 2. Fig. 7(b) compares 

total instauration cost between the abovementioned two 

schemes for all possible starting scenarios, i.e., states (2|L| 

= 64). 

8. CONCLUSION 

 

A game-theoretic intrusion replication engine, called the 

Replication and Instauration Engine (RRE), was 

presented. We modeled the security maintenance of 
computer networks as a Stackelberg stochastic two-player 

game in which the assailant and replication engine 

endeavor to maximize their own benefits by taking 

optimal adversary and replication actions, respectively. 

Utilizing an elongated attack tree structure called the 

Attack-Replication Tree (ART), RRE explicitly takes into 

account inaccuracies associated with IDS alerts in 

estimating the security state of the system. Moreover, RRE 

explores the intentional malevolent attacker’s next 

possible action space afore deciding upon the optimal 

replication action, so that it is ensured that the assailer 
cannot cause more preponderant damage than what RRE 

soothsays. Experiments show that RRE takes congruous 

countermeasure actions against perpetual attacks, and 

brings an insecure network to its mundane operational 

mode with the minimum possible cost. 
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